

Information Shocks and Real-Time Market Reactions: Evidence from Blockchain-Based Fan Tokens During the FIFA World Cup

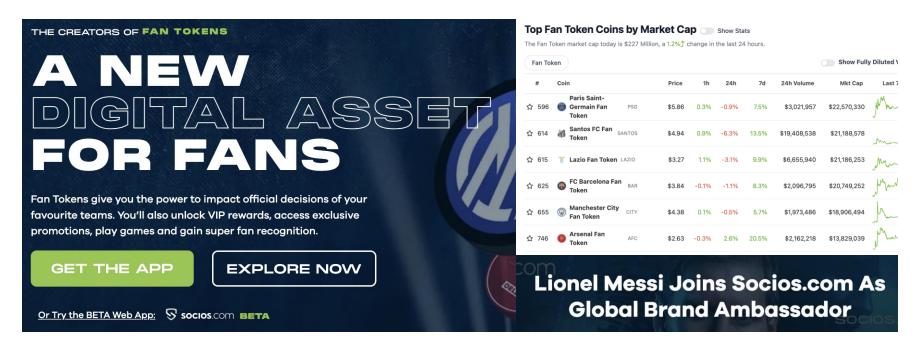
1st International On-chain Economy Conference

Prof. Dr. Lennart Ante May 25

<u>constructor.</u> <u>universit</u>y

Fan Tokens

Fan tokens are crypto assets that give holders access to exclusive perks and engagement opportunities with a sports team, club, or brand. Typically issued by sports organizations on blockchain platforms like Chiliz (via Socios.com).



Sources: https://www.socios.com/ and https://www.coingecko.com/en/categories/fan-token

Why Fan Token Research?

Academic exploration of fan tokens: Utility, Financialization, Technology, etc.

Blockchain and Sports

What are fan tokens?

How are fan tokens used?

Fan token markets

Anticipatory gains and event-driven losses in blockchain-based fan tokens: Evidence from the FIFA World Cup

- Tournament (N=1) and match-level (N=21) analysis
- Reviewer comment: "Why not analyze intra-game events? That would increase sample size."

Event-level Analysis of World Cup Matches

- 21 World Cup matches in which "fan token teams" participated:
 - Argentine Football Association (ARG); Brazil National Football Team (BFT); Portugal National Team (POR) and Spain National Team (SNFT)

Data collection

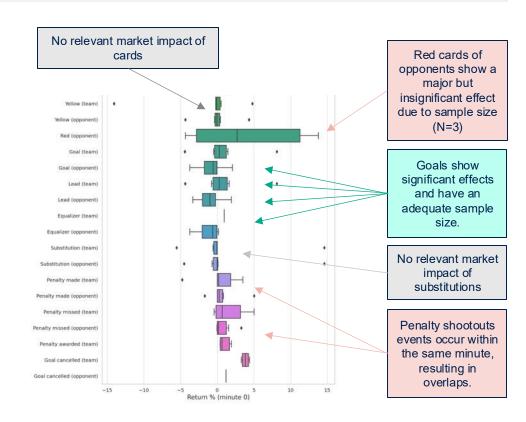
- Log the precise minute of every significant in-game event (N=508)
- Collect minute-level price data for each token
- Contextual data (spectators, player value, player network, match time)

					Event type						
ID	Date	Match	Match Stage	Outcome	Score	Card	Goal	Period	Substitute	Other	Sum
1	Nov 22, 2022	Argentina vs. Saudi Arabia	Group stage 1	Defeat	1:2	6	3	4	8	2	23
2	Nov 23, 2022	Spain vs. Costa Rica	Group stage 1	Victory	7:0	2	7	4	9	0	22
3	Nov 24, 2022	Brazil vs. Serbia	Group stage 1	Victory	2:0	3	2	4	10	0	19
4	Nov 24, 2022	Portugal vs. Ghana	Group stage 1	Victory	3:2	6	5	4	10	0	25
5	Nov 26, 2022	Argentina vs. Mexico	Group stage 2	Victory	2:0	5	2	4	9	0	20
6	Nov 27, 2022	Spain vs. Germany	Group stage 2	Draw	1:1	4	2	4	9	1	20
7	Nov 28, 2022	Brazil vs. Switzerland	Group stage 2	Victory	1:0	2	1	4	10	1	18
8	Nov 28, 2022	Portugal vs. Uruguay	Group stage 2	Victory	2:0	5	2	4	10	1	22
9	Nov 30, 2022	Argentina vs. Poland	Group stage 3	Victory	2:0	2	2	4	10	2	20
10	Dec 1, 2022	Spain vs. Japan	Group stage 3	Defeat	1:2	3	3	4	10	1	21
11	Dec 2, 2022	Brazil vs. Cameroon	Group stage 3	Defeat	0:1	7	1	4	8	0	20
12	Dec 2, 2022	Portugal vs. South Korea	Group stage 3	Defeat	1:2	2	3	4	9	0	18
13	Dec 3, 2022	Argentina vs. Australia	Round of 16	Victory	2:1	2	3	4	10	0	19
14	Dec 5, 2022	Brazil vs. South Korea	Round of 16	Victory	4:1	1	5	4	10	0	20
15	Dec 6, 2022	Spain vs. Morocco	Round of 16	Defeat	0:0 (0:3)	2	0	10	11	7	30
16	Dec 6, 2022	Portugal vs. Switzerland	Round of 16	Victory	6:1	2	7	4	10	0	23
17	Dec 9, 2022	Brazil vs. Croatia	Quarter-finals	Defeat	1:1 (2:4)	5	2	10	10	8	35
18	Dec 9, 2022	Argentina vs. Netherlands	Quarter-finals	Victory	2:2 (4:3)	16	4	10	11	10	51
19	Dec 10, 2022	Portugal vs. Morocco	Quarter finals	Loss	0:1	4	1	4	10	0	19
20	Dec 13, 2022	Argentina vs. Croatia	Semi-finals	Victory	3:0	4	3	4	10	0	21
21	Dec 18, 2022	Argentina vs. France	Final	Victory	3:3 (4:2)	7	6	10	13	8	44

Identifying Relevant In-Game Events

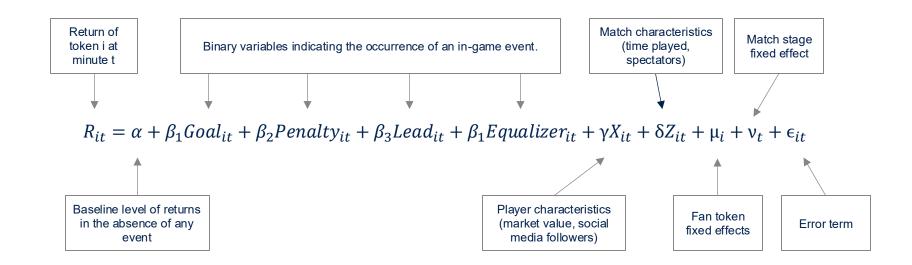
Step 1: Identify which in-game events have a significant impact on fan token prices

- Various challenges with data, both in terms of sample size and logic.
- Focus on goals as "significant" events for more detailed analysis.



Regression model

Step 2: Baseline regression model is specified as follows:



Results

- Goals scored by the fan token team can increase returns.
- Penalties are relevant but inconclusive due to overlaps during the penalty shootout.
- Opponent equalizer significantly reduces returns.
- Effects for player value, social media are inconclusive
- Model fits the data well

Table 3. Regression analysis of goal-scoring events from and against fan token teams.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Goal characteristics			$\overline{}$	·					
Goal (team)	-0.127	2.870*	5.034**	-	-	-	-	-	-
	(1.106)	(1.701)	(2.452)	,	$\overline{}$				
Penalty (team)	-2.470**	-0.411	0.104	-2.573*	-1.686	-1.202	-	-	-
	(1.055)	(1.622)	(2.376)	(1.283)	(1.238)	(1.713)			
Lead (team)	-1.144	-0.509	1.624	-0.588	0.095	1.613	-	-	-
	(0.732)	(1.127)	(1.650)	(1.682)	(1.623)	(2.245)			
Equalizer (team)	1.114	3.218	4.464	1.196	3.217	6.765*	-	-	-
	(2.386)	(3.670)	(5.375)	(3.022)	(2.917)	(3.803)		$\overline{}$	
Penalty (opp)	1.998	8.529	-3.623	-	-	-	3.098	18.720**	7.776
	(2.413)	(3.713)	(5.438)				(1.656)	(6.67	(9.737)
Lead (opp)	-1.665	-2.656	-2.708	-	-	-	-1.691	-2.243	-3.216
	(1.358)	(2.088)	(3.059)				(1.332)	(5.376)	(7.837)
Equalizer (opp)	-0.875	-5.410***	-7.132**	-	-	-	-0.620	-0.372	-4.022
	(1.204)	(1.851)	(2.711)				(1.172)	(4.729)	(6.895)
Player characteristics									
Transfer value	0.384	-0.684	-1.381**	0.164	0.008	0.024	-0.143	-0.013	-2.033
	(0.276)	(0.424)	(0.621)	(0.549)	(0.529)	(0.733)	(0.404)	(1.631)	(2.378)
Social network	0.291*	0.066	0.169	0.202	0.131	0.093	0.036	-2.937	1.687
	(0.148)	(0.227)	(0.333)	(0.186)	(0.179)	(0.248)	(0.609)	(2.456)	(3.581)
Match characteristics									
Time played	-0.007	0.007	0.027	-0.012	0.003	0.027*	0.023	-0.005	0.075
	(0.009)	(0.014)	(0.020)	(0.013)	(0.012)	(0.013)	(0.016)	(0.065)	(0.094)
Attendance	-0.022	-0.032	-0.048	-0.037	-0.031	-0.062*	-0.002	0.021	-0.036
	(0.016)	(0.024)	(0.036)	(0.025)	(0.024)	(0.033)	(0.019)	(0.075)	(0.110)
Token FE	✓	✓	✓	✓	✓	✓	✓	✓	✓
Match FE	✓	✓	✓	✓	✓	✓	✓	✓	✓
Observations	64	64	64	44	44	44	20	20	20
Sample	All goals	All goals	All goals	Team goals	Team goals	Team goals	Opp. goals	Opp. goals	Opp. goals
R-squared (adj.)	0.46 (0.21)	0.67 (0.51)	0.72 (0.59)	0.43 (0.05)	0.45 (0.09)	0.59 (0.32)	0.71 (0.59)	0.74 (0.52)	0.78 (0.59)
Dep. variable	Return [0]	Return [0,1]	Return [0,2]	Return [0]	Return [0,1]	Return [0,2]	Return [0]	Return [0,1]	Return [0,2]

Notes: Table 3 shows different regression model results. Models 1-3 predict fan token returns following goals scored in general, models 4-6 predict returns for events where a goal was scored by a fan token team (Argentina, Brazil, Portugal, and Spain), while models 7-9 predict fan token returns of the team when their opponent scores a goal against them. The transfer value represents the player's market value in a million Euros, and the social network variable represents the log-transformed Instagram follower count on the day before the goal was scored. Coefficients and robust standard errors (in parentheses) are scaled by a factor of 100 to provide better readability and interpretability. Statistical significance is denoted by *, ***, and ****, corresponding to 10%, 5%, and 1% levels, respectively.

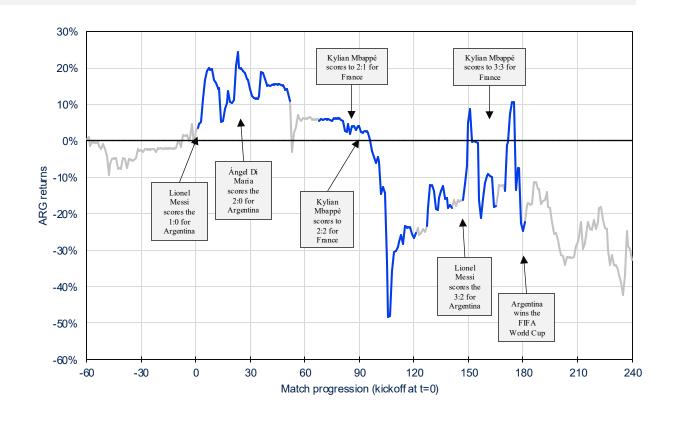
Goals scored by the fan token-associated team generally lead to positive abnormal returns.

Results for penalties are not logical, likely results are blurred due to overlap during penalty phase (multiple goals/misses in one minute)

Equalizing goals scored by the opponent show the most substantial negative effect, -7.13% (p < 0.05) within two minutes.

Conclusion

- Fan tokens exhibit systematic, behavior-driven price reactions to events during matches of the World Cup.
- Negative game outcomes trigger larger price moves than positive ones ("loss effect").
- Results may be explained by loss aversion and mood effects.
- Crowd psychology and game context are relevant when assessing fan tokens.



Thank you!

Contact: lante@constructor.university

<u>constructor.</u> <u>university</u>