

digital TuRn in EUrope: Strengthening relational reliance through Technology

Blockchain and Smart Cities for Inclusive and Sustainable Communities: a Review

Biasin, M., Delle Foglie, A.

Corresponding author: <u>a.dellefoglie1@unimc.it</u>

1° International On-chain Economy Conference

May 23-25, SGH Warsaw School of Economics, Warsav, Poland

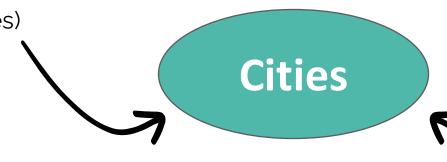
DIPARTIMENTO DI ECONOMIA E DIRITTO

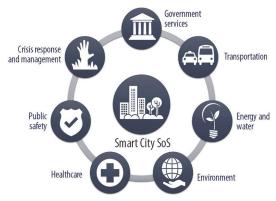
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101007820.

This presentation reflects only the author's view and the REA is not responsible for any use that may be made of the information it contains.

Agenda

- Background
- Research Motivations and Contribution
- Research Design
- Results of the Bibliometric Analysis
- Results of the Systematic Analysis
- Conclusions and Research Agenda




Background

A Collection of real estate assets (building and infrastructures)

A set of governance structures and services (transportation, security, waste management,

- Quality of life \rightarrow almost 75% of EU people live in cities
- Sustainability and climate change -> almost 75% of total GHG emissions come from metropolitan areas
- **Use of spaces** → Urban areas represent between 3-6% of the total geographic land use but roughly 90% of the overall land/real estate values in financial terms where, in turn, real estate represents almost 55-57% of the overall wealth of households' portfolios

Research Motivations and Contribution

- Lack of literature → lack of a systematic comprehension of the existing literature of the field and the fact
 that, despite the research efforts by scholars, crucial knowledge about smart cities remains scattered
 and fragmented on several fronts, leading to limited contributions also in terms of potential policy
 indications.
- P Scarcity of studies referring specifically to applications of blockchain technology to urban activities and phenomena that allow, as a whole, an integrated vision of their impacts on the overall urban system. This is to the benefit of both economic operators and governance authorities in charge of the regulatory choices on the subject and for managing the urban contexts.

Research Motivations and Contribution

Blockchain as a Distributed Ledger Technology (DLT) has immense potential for urban settings -> perfectly suited to conveying secure and trusted information spread across sites and market participants

- → At the micro-level for incorporating legal, ESG, technical, and financial data on urban real estate assets and development projects
- → At the macro-level for integrating reliable and certified information in traditional metropolitan services and cities' overall planning and renewal
 - 1. Perimeter the reference literature investigating smart cities and blockchain technology
 - 2. Outline the knowledge in the field in terms of research topics and results -> map emerging trends and

intellectual structures in smart cities research

3. Highlight the directions for potential future research with a pioneer research agenda

Research Design

- ✓ Firstly combine qualitative and quantitative methods in the field → systematics and bibliometrics methodologies (Paul and Criado, 2020):
- ✓ Firstly adopt SPAR-4-SLR protocol in the field (Kumar et al., 2022; Paul et al., 2021, He et al., 2022);
- ✓ Review softwares → VOSviewer (Van Eck and Waltman, 2020) and Bibliometrix (Aria and cuccurullo, 2017)
- ✓ Original dataset 1950 2023

ASSEMBLING

Keywords: ((((TS=("SMART CIT*") AND TS=(BLOCKCHAIN*)) OR (TS=("SMART CIT*") AND TS=(BCT)) OR (TS=("SMART CIT*") AND TS=(DLT)) OR (TS=("SMART CIT*") AND TS=("DLT)) OR (TS=("SMART CIT*") AND TS=("DISTRIBUTED LEDGER TECHNOLOG*")))).

Database: Web of Science

Selection Period: 2016 - 2023 (October)

Search Results: 940 documents

ARRANGING

Language filters: English

Documents filters: article and review

 Web
 of
 Science
 categories:

 telecommunications,
 transportation

 science,
 urban studies,
 management,

 business,
 business finance, economics,

 environmental
 sciences
 and

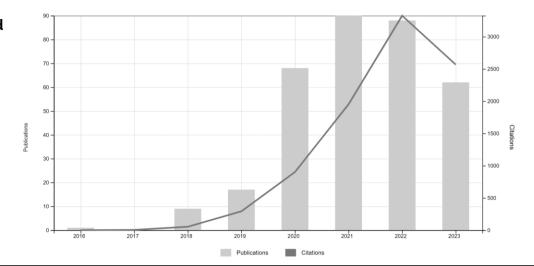
 multidisciplinary sciences

Filtered Search Results: 344 documents **ASSESSING**

Analysis methods - Stage 1: bibliometric analysis techniques: performance indicators, co-authorship analysis, cocitation of cited references, co-occurrance of keywords.

Analysis methods - Stage 2: sample limitation to business, finance and management WoS categories and systematic literature review

Further limited Search Results for SLR: 25 documents



Information about the sample and performance analysis

Table 2. Top Influential Sources by TC

Source	Н	G Index	M Index	тс	N. of Articles	PY_start	Impact
	Index				published		Factor**
IEEE Access	17	33	3	1470	33	2018	3.9
IEEE Internet of Things Journal	16	32	3	1072	35	2019	10.6
Sustainable Cities and Society	11	13	1.833	984	13	2018	11.7
IEEE Communications Surveys and Tutorials	6	6	1	862	6	2019	35.6
Cities	4	4	1	445	4	2019	6.7

Figure 1. Times cited and published over time.

Table 1. Sample Details

Description	Results
Sources (Journals)	87
Authors	1181
Documents	334
References	18654
Average years from publication	1.7
Average citations per document	26.83
Average citations per year per	0
doc	8
Documents per author	0.283
Authors per document	3.54
Co-authors per documents	4.25
Collaboration index	3.72

Information about the sample and performance analysis

Table 3. Top Global Cited Documents

Author (s) (Year)	Title	Journal	Local Citation	Total Citations	TC per Year	LC/TC Ratio (%)	Normalized TC
Fuller et al. (2020)	Digital Twin: Enabling Technologies, Challenges and Open Research	IEEE Access	0	442	111	0	10
Allam and Dhunny (2019)	On big data, artificial intelligence, and smart cities	Cities	11	329	66	3.34	3
Dagher et al. (2018)	Ancile: Privacy-preserving framework for access control and interoperability of electronic health records using blockchain technology	Sustainable Cities and Society	7	329	55	2.13	3
Xie et al (2019)	A Survey of Blockchain Technology Applied to Smart Cities: Research Issues and Challenges	IEEE Communications Surveys & Tutorials	38	298	60	12.75	3
Stoyanova et al. (2020)	A Survey on the Internet of Things (IoT) Forensics: Challenges, Approaches, and Open Issues	IEEE Communications Surveys & Tutorials	5	261	65	1.92	6
Sun et al (2016)	Blockchain-based sharing services: What blockchain technology can contribute to smart cities	Financial Innovation	28	253	32	11.07	1

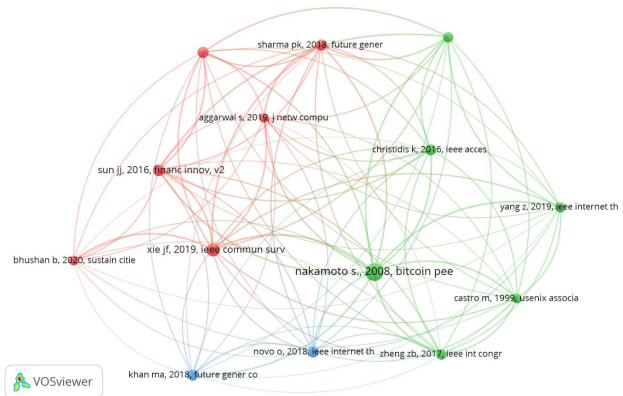


Co-authorship Analysis

Co-authorship analysis, also named social network analysis, has become a common practice in literature reviews. It helps identify relationships between authors, which in turn helps scholars in their future research projects (Bahoo et al., 2020; Olawumi and Chan, 2018; Hajek et al., 2022).

% VOSviewer	
\ -	

Author (s) (Year)	Title	Journal	тс	ТСрҮ	Cluster
Yu F. Richard	A survey of blockchain technology applied to smart cities: research issues and challenges	IEEE Communications Surveys & Tutorials	298	60	-
Choo Kim- Kwang Raymond	A blockchain future for internet of things security: a position paper	Digital Communications and Networks	222	37	3
Guizani Mohsen	Privacy-preserving support vector machine training over blockchain-based encrypted IoT data in smart cities	IEEE Internet of Things Journal	210	42	2

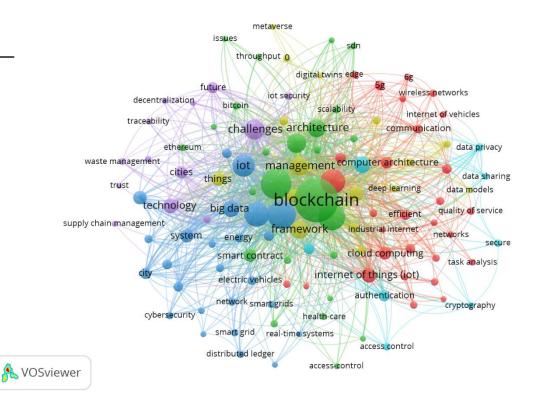


Co-citation analysis

Three clusters...

This bibliometric method allows for identifying the articles that cite each other on the same concept or topic. This method provides valuable insights into the commonalities and research streams or clusters in the literature, thereby aiding in the identification of emerging trends and areas of interest (Panetta et al., 2023; Paltrinieri et al., 2019; Patel et al., 2022; Hajel et al., 2022).

	Author/s (Year)	Citations	Total Link Strength	Cluster	
	Nakamoto (2008)	65	113	2	_
	Xie et al. (2019)	38	92	1	
	Sun et al. (2016)	28	77	1	
	Sharma and Park (2018)	27	78	-	
1	Biswas et al. (2016)	26	67	1	
	Khan and Salah (2018)	26	37	3	
	Christidis and Devetsikiotis (2016)	25	60	2	
	Novo et al. (2018)	25	56	3	
	Sharma et al. (2017)	22	72	2	
	Yang et al. (2018)	22	50	2	



Co-occurrence Analysis

Cartographic analysis aims to map the keywords that identify different research streams by grouping them into clusters that represent content areas. The relatedness of these areas is evaluated by considering the total link strength and the number of occurrences of the keywords in the sample (Khan et al., 2022; Migliavacca et al., 2023; Bahoo et al., 2020; Sgambati and Gargiulo, 2022).

Keywords	Occurrences	Total Link Strenght	Cluster
Blockchain	249	1460	Green
Smart Cities	117	790	Green
Internet	101	743	Blue
Security	94	749	Green
Smart City	79	442	Green
Internet Of Things	76	573	Red
IoT	64	476	Blue
Challenges	53	423	Purple
Privacy	47	377	Green
Management	44	369	Yellow

Results of the Systematic Analysis

Focus: WoS Business, Finance, Economics and Management

- Examining the current status of blockchain applications in developing financial ecosystems for smart cities
- We have limited the database to Business, Finance, Economics, and Management WoS categories yielding 25 documents published between 2016 and 2023.
- According to Paul et al. (2021), the process of conducting a SLR is the best option to achieve our objective since it helps
 to develop a comprehensive understanding of existing literature (state of the art) and provides new avenues for future
 research (stimulating agenda)
- The SLR process classifies the documents into **nine main themes**:

i) Blockchain, governance and infrastructure vi) Blockchain applications in the Smart City development

ii) Definitions and key components vii) Transport and logistic systems

iii) Blockchain implementation and performance indicators vii) Big Data

iv) Smart City development financing ix) Blockchain and sustainability of Electric Vehicle

v) Robotic services performance.

Results of the Systematic Analysis

Focus: WoS Business, Finance, Economics and Management

- **Blockchain in Smart City Governance**: Blockchain enhances smart city governance by utilizing data computing, distributed ledger technology (DLT), visual analytics, and smart devices to engage the public, increase trust, and reduce costs through seamless data-sharing and smart contracts, leading to optimized self-governance.
- **Community-led Initiatives**: Marsal-Llacuna (2020) advocates for a People's Smart City Dashboard (PSCD) to address the top-down approach of current smart city developments by enabling community-led implementation and collaboration.
- **Technological Contributions**: Bohloul (2020) reviews challenges and trends in smart cities, highlighting the potential of technologies like blockchain, 5G, VR/AR, and quantum computing to advance smart cities, creating opportunities for research and entrepreneurship.
- Further Research and Trends: various authors (Migliorini et al., Sun et al., Tiwari et al.) emphasize the role of blockchain in disrupting urban networks, smart city governance, infrastructure, and financial services. Tiwari et al. (2019) also present a framework for adopting Industry 4.0 technologies like big data, cloud computing, edge computing, and IoT in smart cities.

These papers underscore the evolving nature of smart cities, driven by advanced technologies and community-led governance models.

We found a lack of literature concerning the financial aspects of the smart city financial system...

Conclusions and Research Agenda

- **Digital Technologies in Smart Cities** > promote sustainability, optimize public services, and enhance citizen well-being
- Importance of the Financial System
 - Crucial for development and resilience of smart cities
 - Enhances citizen participation and resource efficiency
 - Fundamental to smart city functionality
- Role of Blockchain and DLT
 - Increase financial inclusiveness and participation
 - Support smart city development and resilience
 - Focus of this study on their financial and economic applications in smart cities
- Current Research Gaps
 - Limited focus on practical financial applications of blockchain and DLT
 - Most studies emphasize other technologies (IoT, cloud computing, 5G) over blockchain's financial role
 - Need for more research on blockchain's integration into smart city financial systems

Conclusions and Research Agenda

Key Areas for Future Research

- Financial ecosystem development in smart cities
- Integration of Central Bank Digital Currencies (CBDCs) in smart city payment systems
- Blockchain-based solutions for real estate (secure land registry, property transactions).
- Blockchain applications in urban services (transportation, waste management, energy services)

Implications for Researchers and Policymakers

- Explore blockchain's impact on urban financial activities
- Focus on practical applications to improve citizen participation and resource efficiency
- Address current research gaps to support smart city financial system development.

Conclusions and Research Agenda

Research Area	Further Research Issues
Payment services in smart city transactions	 Use of blockchain to increase transactions in smart cities without compromising performance Factors influencing the adoption of blockchain-based payment system How to increase user experience
Blockchain for the smart city real estate market	 How can blockchain technology be used to create secure and immutable records of title and ownership for real estate properties, thereby reducing fraud and enhancing transparency in smart cities (and reducing transaction costs)? Implementing smart contracts for buying, selling and renting properties
Smart contract and urban services	 Implementing blockchain and smart contract for automating parked reservation, waste collection, recycling systems, energy distribution, energy trading platforms, etc.
Blockchain and data storage, security, and privacy	 Issues of data storage solutions Enhancing transparency, immutability → privacy → thinking about cyber risk issues
Smart city governance and integration with other systems	E-voting systemsAutomate public governance procedures

digital TuRn in EUrope: Strengthening relational reliance through Technology

Q&A

Contacts: <u>a.dellefoglie1@unimc.it</u>

DIPARTIMENTO DI **ECONOMIA E DIRITTO**